

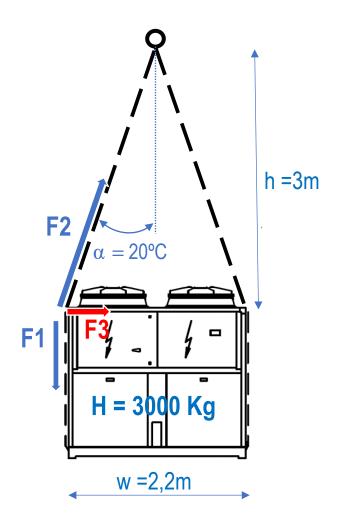
Force Calculation on Single Point Load Lifting

Force calculations on single point lifting, using basic trigonometry.

Example:

Single point lifting, without spread bar, 3m above a 3000Kg load, 2.2m wide.

Angle α is the key value to be used for the force calculations; and may be calculated by:


 α = tan (0,5 w / h) (aprox. 20°).

Considering the 3000Kg unit, lifted by 4 slings, we have a 750Kg force (F1) on each point (H/4).

F2 may be obtained by: $(H/4)/\cos\alpha = 798Kg$

F3 may be obtained by: F2 x cos α = 273Kg

This force F3 is forcing each side coil on 2 points. Force increases with the unit weight (H) and with the reduction of lifting hight (h).

